Day 05

Rigid Body Transformations

Rotation About a Unit Axis

$$
\begin{aligned}
& c_{\theta}=\cos \theta \\
& s_{\theta}=\sin \theta \\
& v_{\theta}=1-\cos \theta
\end{aligned}
$$

$$
R_{k, \theta}=\left[\begin{array}{ccc}
k_{x}^{2} v_{\theta}+c_{\theta} & k_{x} k_{y} v_{\theta}-k_{z} s_{\theta} & k_{x} k_{z} v_{\theta}+k_{y} s_{\theta} \\
k_{x} k_{y} v_{\theta}+k_{z} s_{\theta} & k_{y}^{2} v_{\theta}+c_{\theta} & k_{y} k_{z} v_{\theta}-k_{x} s_{\theta} \\
k_{x} k_{z} v_{\theta}-k_{y} s_{\theta} & k_{y} k_{z} v_{\theta}+k_{x} s_{\theta} & k_{z}^{2} v_{\theta}+c_{\theta}
\end{array}\right]
$$

Properties of Rotation Matrices

- $R^{T}=R^{-1}$
the columns of R are mutually orthogonal each column of R is a unit vector $\operatorname{det} R=1$ (the determinant is equal to 1)

Rigid Body Transformations in 3D

Homogeneous Representation

- every rigid-body transformation can be represented as a rotation followed by a translation in the same frame
- as a 4×4 matrix

$$
T=\left[\begin{array}{llll}
& R & & d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where R is a 3×3 rotation matrix and d is a 3×1 translation vector

Homogeneous Representation

in some frame i
p points

$$
P^{i}=\left[\begin{array}{c}
p^{i} \\
1
\end{array}\right]
$$

vectors

$$
V^{i}=\left[\begin{array}{c}
v^{i} \\
0
\end{array}\right]
$$

Inverse Transformation

- the inverse of a transformation undoes the original transformation
- if

$$
T=\left[\begin{array}{llll}
& R & & d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- then

$$
T^{-1}=\left[\begin{array}{ccc}
R^{T} & -R^{T} d \\
0 & 0 & 0
\end{array}\right]
$$

